Number Systems

Exercises

- 1. 1010 + 1101Answer: 10111
- 2. 1011 + 111Answer: 10010
- 3. 1111 1010Answer: 101
- 4. 1110 101 Answer: 1001
- 5. 1101×101 Answer: 1000001
- 0. 1101 × 101 11115 WOI. 1000001
- 6. $1001 \div 101$ Answer: 1r101 or 1.11001100... which we write $1.\dot{1}\ 10\dot{0}$
- 7. What is the biggest binary number you can write with 5 bits? Answer: 31
- 8. What is the biggest binary number you can write with n bits? Answer: $2^n 1$
- 9. Roughly, how many bits do you need to write the number n in binary? Answer: roughly $\log_2 n$, exactly $\lceil \log_2 (n+1) \rceil$
- 10. Write $\frac{3}{4}$ in binary, using a "binary point" 0.??. Answer: 0.11
- 11. Write $\frac{2}{3}$ in binary. Answer: $0.101010\ldots = 0.\ \dot{10}$
- 12. Which fractions recur infinitely in binary and which terminate? Answer: if demoninator of fraction in lowest form is power of 2 then it terminates, else not.

Exercises

- 13. Convert the binary number 1101101111110101 to hex. Answer: DBF5
- 14. Convert the hex number ABC7 to binary. Answer: 101010110111
- 15. In hex, 2BFC + 54A7. Answer: 80A3
- 16. In hex, AC74 B3F. Answer: A135
- 17. If a number has k digits in hex, how many digits (bits) does it have in binary? Answer: $\frac{k}{4}$

- 18. If a number has k digits in decimal, roughly how many digits does it have in binary? Answer: roughly $\frac{k}{\log_2 10} \cong \frac{k}{3}$
- 19. If a number has k digits base a, roughly how many digits does it have in base b? Answer: roughly $\frac{k}{\log_b a} = k \times log_a b$

Exercises Write the following decimal numbers in eight bit two's complement, do the addition/subtraction, convert your answer back to decimal.

- 20. $^{-}3+^{+}11$ Answer: $^{-}3=11111101$. So $^{-}3+^{+}11=11111101+00001011=00001000$
- 21. $^{+}125 + ^{-}40$ Answer: 125 = 01111101, $^{-}40 = 11011000$ so $125 + ^{-}40 = 01010101 = 85$
- 22. +5 + 7 Answer: 00000101 + 111111001 = 111111110 = 2
- 23. -23 18. Answer: 11101001 + 11101110 = 11010111 = 41

For n bit two's complement what is the range of numbers you can represent?

Answer: Biggest positive numer is 0 $11 \dots 1 = 2^{n-1} - 1$. Negative numbers go down from $-1 = 1 \dots 11$ down to 1 $00 \dots 0$ $1 = 2^{n-1} - 1$. But negative numbers can go one lower still: least negative number is 1 $00 \dots 0 = 2^{n-1}$. So range of numbers is $[-2^{n-1}, +2^{n-1}-1]$.

Exercises Write the following fractions in binary. Use one sign bit and four bits after the binary point.

- 24. $\frac{5}{8}$ Answer: 0.1010
- 25. $-\frac{5}{8}$ Answer: negate previous answer, i.e. flip all bits and add one to lsb, so 1.0110

Convert the following binary fractions to ordinary fractions.

- 26. 0.1000 Answer: $\frac{1}{2}$
- 27. 1.0001 Answer: $-\frac{15}{16}$
- 28. 0.1111 Answer: $\frac{15}{16}$
- 29. 1.1111 Answer: $-\frac{1}{16}$

What fractions can be represented as binary fractions with one sign bit and four bits after the binary point? Answer: $\begin{bmatrix} -1, +\frac{15}{16} \end{bmatrix}$

Exercises Using 5 bits for the mantissa and 5 bits for the exponent, write the following numbers in two complement binary.

- 30. $\frac{5}{16}$ Answer: 0.0101 0000, mantissa represents $\frac{5}{16}$ exponent represents $2^0=1$
- 31. $101\frac{1}{4}$ Answer: Bad example. This number is $\frac{21}{4}$, so mantissa should be $\frac{21}{32}=0.10101$, but four available bits are not enough to represent this. Can approximate by losing last bit, 0.1010 0011, i.e. $\frac{5}{8}\times 2^3=5$, so the quarter gets lost.
- 32. $\frac{1}{1024}$ Answer: 0.1000 10111
- 33. $-\frac{3}{512}$ Answer: 0.0011 11001