Sl	SYLLABUS FOR COMPUTER SCIENCE AND ENGINEERING
No	Unit Name and Content
1	Problem Solving using C: Design of algorithms for solving problems and use of C language features
	like expressions, branching and looping, arrays and structures, functions, recursion, pointers and
	dynamic memory allocation, preprocessor directives, files etc. for implementation of these algorithms
2	Object Oriented Programming using C++: Features of object oriented programming languages,
	Classes and objects, inheritance, compiler time and run time polymorphism, abstract classes,
2	interfaces, exception handling, class templates
3	Internet Programming: Java language features, use of AWT and SWING package, event driven
	programming, threads in Java, networking using Java, JDBC,HTML, Javascript, DHTML,DOM, SOAP,XML,XSL, JSP and PHP
4	Digital Systems: Transistor Logic family, simplification of Boolean Functions, combinational Logic
7	design, synchronous sequential logic design, counters, registers
5	Computer Organization: Architecture of 8086/8088 microprocessor, instruction set architecture and
	addressing modes, assembly language programming, RISC, CISC, memory technology, IO subsystem,
	pipelining
6	Data structures : Representation and implementation of linear data structures like linear lists, stacks,
	queues, dynamic memory storage management techniques, representation and implementation of
	graphs, trees, binary search tress, height balanced trees, searching and sorting, graph algorithms
	(traversal, shortest path, spanning tree, max flow) and tree algorithms (traversals, searching,
_	successors)
7	Operating System: Architecture, process management, process synchronization and inter process
	communication, UNIX system calls for process management and memory management, System V IPC, Files and Directories.
8	Microprocessors and microcontrollers: 8085 Microprocessor, parallel data transfer using 8155 -
O	DMA transfer using 8257 DMA controller, system design using interrupt 8259 controller - Floppy
	Disk Controller - CRT controller, microprocessor interfacing techniques
9	Computer Network: Data transmission concepts, OSI and TCP/IP architectures, data encoding, data
	link control, Medium Access Control, routing algorithms, transport layer(TCP and UDP), Application
	Layer (FTP,SMTP,SNMP,DNS,HTTP)
10	Database Management System: Relational data model, relational languages, file organization,
	query processing, query optimization, database design, concurrency control and recovery, parallel
	and distributed database, storage, querying and transformation of XML document schema, object
	databases, advanced transaction processing
11	Software Engineering : Software life cycle models, software requirements analysis and specification,
12	software design, software testing and quality management, software project management
12	Distributed Computing: Architectural models, logical clocks, mutual exclusion, distributed deadlock
	detection, distributed objects and remote invocation, distributed transactions